A nonsmooth, nonconvex model of optimal growth

نویسندگان

  • Takashi Kamihigashi
  • Santanu Roy
چکیده

This paper analyzes the nature of economic dynamics in a one-sector optimal growth model in which the technology is generally nonconvex, nondifferentiable, and discontinuous. The model also allows for irreversible investment and unbounded growth. We develop various tools to overcome the technical difficulties posed by the generality of the model. We provide sufficient conditions for optimal paths to be bounded, to converge to zero, to be bounded away from zero, and to grow unboundedly. We also show that under certain conditions, if the discount factor is close to one, any optimal path from a given initial capital stock converges to a small neighborhood of the golden rule capital stock, at which sustainable consumption is maximized. If it is maximized at infinity, then as the discount factor approaches one, any optimal path either grows unboundedly or converges to an arbitrarily large capital stock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

Optimal Control of Nonconvex Discrete and Differential Inclusions

Optimization problems for discrete and diierential inclusions have many important applications and generalize both standard and nonstandard models in optimal control for open-loop and closed-loop control systems. In this paper we consider optimal control problems for dynamic systems governed by such inclusions with general endpoint constraints. We provide a variational analysis of diierential i...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

A Class of Nonconvex Nonsmooth Approximate Potential Functions for Nonconvex Nonsmooth Image Restoration

Nonconvex nonsmooth potential functions have superior restoration performance for the images with neat boundaries. However, several difficulties emerge from the numerical computation. Thus the graduated nonconvex (GNC) method is suggested to deal with these problems. To improve the performance of the GNC method further, a class of nonconvex nonsmooth approximate potential functions have been co...

متن کامل

Existence of Solutions for Nonconvex and Nonsmooth Vector Optimization Problems

We consider the weakly efficient solution for a class of nonconvex and nonsmooth vector optimization problems in Banach spaces. We show the equivalence between the nonconvex and nonsmooth vector optimization problem and the vector variational-like inequality involving set-valued mappings. We prove some existence results concerned with the weakly efficient solution for the nonconvex and nonsmoot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Economic Theory

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2007